
Aman, N., Hadi, F., Khalil, S. A., Zamir, R. & Ahmad, N. Efficient regeneration for enhanced steviol glycosides production in Stevia rebaudiana (Bertoni). C.R. Biol. 336(10), 486–492 (2013).
Hwang, S. J. Rapidin Vitro propagation and enhanced stevioside accumulation in Stevia rebaudiana Bert. J. Plant Biol. 49(4), 267–270 (2006).
Kinghorn, A. D. et al. A phytochemical screening procedure for sweet ent-kaurene glycosides in the genus Stevia. J. Nat. Prod. 47(3), 439–444 (1984).
Melis, M. S. Renal excretion of stevioside in rats. J. Nat. Prod. 55(5), 688–690 (1992).
Geuns, J. M. Stevioside. Phytochemistry 64(5), 913–921 (2003).
Crammer, B. Sweet glycosides from the stevia plant. Chem. Br. 22, 915–918 (1986).
Singh, S. & Rao, G. Stevia: The herbal sugar of 21st century. Sugar Tech. 7(1), 17–24 (2005).
Brandle, J. & Rosa, N. Heritability for yield, leaf: stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can. J. Plant Sci. 72(4), 1263–1266 (1992).
Woelwer-Rieck, U., Lankes, C., Wawrzun, A. & Wüst, M. Improved HPLC method for the evaluation of the major steviol glycosides in leaves of Stevia rebaudiana. Eur. Food Res. Technol. 231(4), 581–588 (2010).
Dacome, A. S. & Silva CCDa, Costa CEDa, Fontana JD, Adelmann Costa SCDa,. Sweet diterpenic glycosides balance of a new cultivar of Stevia rebaudiana (Bert.) Bertoni: Isolation and quantitative distribution by chromatographic, spectroscopic, and electrophoretic methods. Process Biochem. 40(11), 3587–3594 (2005).
Debnath, M. Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. J. Med. Plants Res. 2(2), 45–51 (2008).
Dey, A., Kundu, S., Bandyopadhyay, A. & Bhattacharjee, A. Efficient micropropagation and chlorocholine chloride induced stevioside production of Stevia rebaudiana Bertoni. Compt. Rendus Biol. 336(1), 17–27 (2013).
Hutapea, A. M., Toskulkao, C., Buddhasukh, D. & Wilairat, G. T. Digestion of stevioside, a natural sweetener, by various digestive enzymes. J. Clin. Biochem. Nutr. 23(3), 177–186 (1997).
Hong, J., Chen, L., Jeppesen, P. B., Nordentoft, I. & Hermansen, K. Stevioside counteracts the α-cell hypersecretion caused by long-term palmitate exposure. Am. J. Physiol.-Endocrinol. Metab. 290(3), E416–E422 (2006).
Matsukubo, T. & Takazoe, I. Sucrose substitutes and their role in caries prevention. Int. Dent. J. 56(3), 119–130 (2006).
Smith, J. & Van-Stadin, H. Subcellular pathway of glycoside synthesis. South Afr. J. Sci. 88, 206 (1992).
Brandle, J. & Telmer, P. Steviol glycoside biosynthesis. Phytochemistry 68(14), 1855–1863 (2007).
Naz, B. et al. Melatonin-Induced Stress Enhanced Biomass and Production of High-Value Secondary Cell Products in Submerged Adventitious Root Cultures of Stevia rebaudiana (Bert.). ACS Omega https://doi.org/10.1021/acsomega.3c07404 (2024).
Ahmad, N. et al. Elicitation of submerged adventitious root cultures of Stevia rebaudiana with Cuscuta reflexa for production of biomass and secondary metabolites. Molecules 27(1), 14 (2021).
Ahmad, A. et al. Effect of gibberellic acid on production of biomass, polyphenolics and steviol glycosides in adventitious root cultures of Stevia rebaudiana (Bert.). Plants 9(4), 420 (2020).
Hajihashemi, S. & Ehsanpour, A. A. Antioxidant response of Stevia rebaudiana B. to polyethylene glycol and paclobutrazol treatments under in vitro culture. Appl. Biochem. Biotechnol. 172(8), 4038–4052 (2014).
Ahmad, N., Rab, A., Ahmad, N. & Fazal, H. Differential pH-induced biosynthesis of steviol glycosides and biochemical parameters in submerge root cultures of Stevia rebaudiana (Bert.). Sugar Tech. 20, 734–744 (2018).
Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473–497 (1962).
Storey, R. & Jones, R. W. Betaine and choline levels in plants and their relationship to NaCl stress. Plant Sci. Lett. 4(3), 161–168 (1975).
Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16(3), 144–158 (1965).
Balestrasse, K. B., Benavides, M. P., Gallego, S. M. & Tomaro, M. L. Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Func. Plant Biol. 30, 57–64 (2003).
Miller, N. J., Rice-Evans, C., Davies, M. J. & Milner, G. V. A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84(4), 407–412 (1993).
Re, R., Pellegrini, N., Proteggente, A., Pannala, A. & Rice-Evans, Y. M. C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 26(9–10), 1231–1237 (1999).
Dubois, M., Gilles, K., Hammiltron, J. K., Robers, P. A. & Smith, F. A colorimetric method for the determination of sugars. Nature 168, 167–168 (1951).
Bates, L. S., Waldren, R. P. & Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 39(1), 205–207 (1973).
Sivanandhan, G. et al. Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Indus. Crops Prod. 37(1), 124–129 (2012).
Ahmad, N., Rab, A. & Ahmad, N. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). J. Photochem. Photobiol. B Biol. 154, 51–56 (2016).
Yue, W. et al. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 36(2), 215–232 (2016).
Khan, T., Ullah, M. A., Garros, L., Hano, C. & Abbasi, B. H. Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagoniaindica. J. Photochem. Photobiol. B Biol. 190, 163–171 (2019).
Magangana, T. P., Stander, M. A., Masondo, N. A. & Makunga, N. P. Steviol glycoside content and essential oil profiles of Stevia rebaudiana Bertoni in response to NaCl and polyethylene glycol as inducers of salinity and drought stress in vitro. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-020-01972-6 (2021).
Gupta, P., Sharma, S. & Saxena, S. Effect of abiotic stress on growth parameters and steviol glycoside content in Stevia rebaudiana (Bertoni) raised in vitro. J. Appl. Res. Med. Aromatic Plants 3(4), 160–167 (2016).
Pazuki, A., Aflaki, F., Yücesan, B. & Gürel, S. Effects of cytokinins, gibberellic acid 3, and gibberellic acid 4/7 on in vitro growth, morphological traits, and content of steviol glycosides in Stevia rebaudiana. Plant Physiol. Biochem. 137, 154–161 (2019).
Ahmad, M. A., Javed, R., Adeel, M., Rizwan, M. & Yang, Y. PEG 6000-stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production, and antioxidant activities in Stevia rebaudiana Bertoni. Plants 9(11), 1552 (2020).
Khan, M. et al. Polyethylene glycol-stimulated drought stress enhanced the biosynthesis of steviol glycosides in Stevia rebaudiana. Pak. J. Bot. 56, 5 (2024).
Lucho, S. R. et al. Salt stress-induced changes in in vitro cultured Stevia rebaudiana Bertoni: Effect on metabolite contents, antioxidant capacity and expression of steviol glycosides-related biosynthetic genes. J. Plant Growth Regul. 38, 1341–1353 (2019).
Hajihashemi, S. & Ehsanpour, A. A. Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia 68(3), 414–420 (2013).
Kim, I. S., Yang, M., Lee, O. H. & Kang, S. N. The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT-Food Sci. Technol. 44(5), 1328–1332 (2011).
Cantabella, D. et al. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol. Biochem. 115, 484–496 (2017).
Moran, J. F. et al. Drought induces oxidative stress in pea plants. Planta 194(3), 346–352 (1994).
Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24(12), 1337–1344 (2001).
Kedare, S. B. & Singh, R. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48(4), 412–422 (2011).
Shahverdi, M. A., Omidi, H. & Tabatabaei, S. J. Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. J. Saudi Soc. Agricult. Sci. 18(4), 355–360 (2019).
Azzam, C. R. et al. Salinity effects on gene expression, morphological, and physio-biochemical responses of stevia rebaudiana bertoni in vitro. Plants 10(4), 820 (2021).
Anjum, S. A. et al. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agricult. Res. 6(9), 2026–2032 (2011).
Demiral, T. & Türkan, I. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment. J. Plant Physiol. 161(10), 1089–1100 (2004).
Hare, P. D., Cress, W. A. & Van Staden, J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21(6), 535–553 (1998).
Gerami, M., Majidian, P., Ghorbanpour, A. & Alipour, Z. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol. Mol. Biol. Plants 26(5), 965–974 (2020).
Zeng, J. et al. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J. Agricult. Food Chem. 61(24), 5720–5726 (2013).
Li, Y. et al. Deciphering the probiotic properties and safety assessment of a novel multi-stresstolerant aromatic yeast Pichia kudriavzevii HJ2 from marine mangroves. Food Biosci. 56, 103248. https://doi.org/10.1016/j.fbio.2023.103248 (2023).
Gupta, D. K., Palma, J. M. & Corpas, F. J. Redox state as a central regulator of plant-cell stress responses: Edn (Springer, 2016).
Qin, X. et al. The bacterial MtrAB two-component system regulates the cell wall homeostasis responding to environmental alkaline stress. Microbiol Spectr. 10(5), e0231122. https://doi.org/10.1128/spectrum.02311-22 (2023).
Hu, B. et al. Effects of ‘Healthy’ Fecal microbiota transplantation against the deterioration of depression in Fawn-hooded rats. mSystems 7(3), e21822. https://doi.org/10.1128/msystems.00218-22 (2022).
Modi, A. R., Shukla, Y. M., Litoriya, N. S., Patel, N. J. & Narayan, S. Effect of gibberellic acid foliar spray on growth parameters and stevioside content of ex vitro grown plants of Stevia rebaudiana Bertoni. Med. Plants-Int. J. Phytomed. Relat. Indus. 3(2), 157–160 (2011).